

知识不是力量,分享知识才是力量

首页-技术文档

NB-IoT Dongle 使用手册

一、 产品简介

NB-IoT Dongle 是物联俱乐部基于华为海思 Boudica 150 芯片模组开发的。其具有体积小, 使用方便的特点。该设备带有标准的 USB-A 接口,只要插入到电脑的 USB 接口上,就可以利用 串口工具测试 NB-IoT 的相关功能和性能。也可通过 OTG 线接入手机并安装对应的测试软件, 即可实现随时随地测试 NB-IoT 的基站信息、RSRQ、RSRP、SNR、RSSI 等信号质量信息。

◆ 产品优势

- ◆ 尺寸紧凑的 NB-IoT 无线通信模块。
- ◆ 超低功耗、超高灵敏度。
- ◆ 测试终端小巧、便捷。
- ◆ 测量灵敏度高,数据可靠。
- ◆ 支持 NB 主要参数测量、位置信息定位。
- ◆ 支持中国电信、中国移动、中国联通等全频段测试。
- ◆ 支持 Ping 时延迟测试。

◆ 产品参数

特色	说明		
尺寸	84*25*17mm		
表面材料	ABS 塑料		
供电	USB 接口供电: 4.75V~5.25V, 典型供电电压: 5.0V		
发射功率	$23 dBm \pm 2 dBm$		
灵敏度	-129dBm		
支持系统	Windows, Android, Linux		
温度范围	正常工作温度: -35°C [~] +75°C 存储温度: -40°C [~] +90°C		
USIM 接口	支持 1.8V/3.0V 外部 NANO-SIM 卡		
支持频段	B1/B3/B8/B5/B20/B28		
测试参数	PCI/EARFCN/RSRP/RSRP/RSSI/SINR/CELL ID/PING 时延、 TTL/经纬度		
模块型号	移远 BC28		
天线	3dB 增益, SMA 弯头直角		

二、 APP 安装及使用步骤

◆ 手机扫描二维码(建议使用手机浏览器扫描),安装信号测量 APP (NB-IoT 测网仪)。

◆ 信号测试终端通过 OTG 转接线连接手机(部分手机型号需要在设置里开启 OTG 功能)。

◆ 手机与测试终端连接后 APP 会自动打开并载入测试界面,点击右下角的测试按钮进行信号质量 的测,或进入手动界面对模块发送 AT 指令实现交互,也可进入采集界面采集现场环境信号质 量。

NB-IoT Dongle				
• RSRQ • RSRP				
0,				
-40				
-60				
100				
物理信息	信号信息			
🔲 运营商: 中国移动	RSRQ: -11.5			
	RSRP: -77.0			
<u></u> 小区ID: 83956257	RSSI: -68,8			
中心烦点: 3736	SINR: 6.8			
网络信息	信号质量 中			
IP地址: 100.91.211.249				
PING: 180.101.147.115 TTL:				
- 12 AL: 中国江苏省南京市江子区建築。				
1				

NB-IoT Dongle					
◎ 设备: Ch340SerialPort	www.lotclub.net				
+CSQ:23,99	添加				
ОК	AT+CFUN?				
+NBAND:5,8,3,28,20,1	AT+CGMR				
OK	AT+CGSN =1				
OK	AT+NBAN D?				
SSB,V150R100C10B200SP1	AT+NRB				
SECURITY_A.V150R100C20B300SP5	AT+CSQ				
PROTOCOL_A,V150R100C20B300SP 5					
APPLICATION_A,V150R100C20B300S P5					
SECURITY B V150R100C20B300SP5					
请输入指令	换行				
清空 发送数据					
	2 88				

NB-IoT Dongle					
PCI					
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-809		3736		
44	-790		3736		
44	-790		3736		
44	-790		3736		
44	-790		3736		
**	-00		0000		
清	空数据		一鍵测	<u>ي</u>	
	-				

NB-Dongle 使用手册

三、 参数说明

CELL ID 基站小区标识

CELL ID 是网络中小区的编号,与 MCC、MNC 及 LAC 号组合成一个小区全球识别码,用来在全球 范围内唯一识别某一小区。

EARFCN 中心频点

若一个区域的基站中心频点都相同,表示是同频部署。若一个区域的基站中心频点交叉分布,表示是异频部署。

PCI 物理小区标识

PCI 是用于区分不同小区的无线信号,确保在小区覆盖范围内不会有相同的 PCI。

SINR (Signal to Interference plus Noise Ratio, 信号与干扰加噪声比)

SINR 是指接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值,反映当前信道的链路质量。

SINR 的取值范围,比值越大越好。(NB 模组通过 AT 指令查询通常会*10 倍显示)

RSRQ (Reference Signal ReceivedQuality, 参考信号接收质量)

RSRQ 是指当前信道质量的信噪比和干扰水平。不但与承载 RS 的 RE 功率相关,还与承载用户数据的 RE 功率相关,以及邻区的干扰相关,因而 RSRQ 是随着网络负荷和干扰发生变化,网络负荷越大,干扰越大,RSRQ 测量值越小。

RSRQ 的取值范围: -3-19.5,值越大越好。(NB 模组通过 AT 指令查询通常会*10 倍显示)

RSRP (Reference Signal Receiving Power,参考信号接收功率)

RSRP 是代表无线信号强度的关键参数,反映当前信道的路径损耗强度,用于小区覆盖的测量和 小区选择/重选。

RSRP 的取值范围: -44[~]-140dBm, 值越大越好。(NB 模组通过 AT 指令查询通常会*10 倍显示) Rx≪-105, 覆盖强度等级 6,表示覆盖较差。业务基本无法连接。

-105<Rx≤-95,覆盖强度等级 5,表示覆盖差。室外业务能够连接,但连接成功率低,室内业务 基本无法连接。

-95<Rx≤-85,覆盖强度等级4,表示覆盖一般,室外能够连接,室内连接成功率低。

-85<Rx≤-75,覆盖强度等级3,表示覆盖较好,室内外都能够连接。

-75<Rx≤-65,覆盖强度等级2,表示覆盖好,室内外都能够很好的连接。

Rx>-65,覆盖强度等级1,表示覆盖非常好。

CSQ 信号强度

CSQ 指示 RSSI 强度,取值范围为 0-31,数值越大信号越好。 CSQ 值大于 5,终端即可正常工作。若 CSQ 值小于 5 即不能正常工作。如果出现 99 表示无信号。 CSQ=(RSSI<接收信号强度 dBm>+113)/2

Signal Power 信号功率

信号功率越大越好,代表终端接收到基站的信号功率。

Total Power 总功率

总功率越大越好,代表基站小区的发射功率。通常和信号功率相差 10dB 左右。

Tx Power 终端发射功率

数值越小越好,对应会更省电。终端最大的发射功率是 23dBm。

四、 PC 串口助手安装及使用

1. CH340 驱动安装

驱动目录: 03 Driver

安装方法:打开驱动安装程序点击安装即可。

CH341SER.EXE 2017/11/3 21:30 应用程序 238 KB

齃 驱动安装(X64)	
驱动安装/卸载 选择INF文件 :	CH341SER.INF
安装	WCH.CN USB-SERIAL_CH340 BP/00/20112-b-2011-
卸载	00/00/2014, 3.4.2014
帮助	

注: 若安装失败,请先点击卸载,后点击安装。

2. 串口调试助手 QCOM 安装及使用介绍

1) 软件安装

工具目录: 01 Software\工具

安装方法:串口调试助手 QCOM 是免安装的,解压出压缩包即可直接使用。

COM_V1.6.zip

2) 使用介绍

(1) 工具描述

COM Fort Setting	Courand-Lin		
IN Part: 11 W Randrata: 0000 W StanBitz: 1 W Parity: Name W	Choose All Commands	HEX Enter	Delay(nS
	□ 1: [
yteSize: 8 • Flow Control: No Ctrl Flow • Open Port	2:	2	1
	□ 3:		1
	4:		
	5 :	E 🖬 5	
	☐ 6: [
	□ 7: □	E 🖬 7	
	8:		
	9:		
	[10:	□ ₽ 10	
	F 11:		
	12:	□ ₽ 12	
	13:	E 🛛 13	
	14:	E 🛛 14	
	15:	□ ₽ 15	
	16:	16	
	17:		
	18:		
	F 20		
	C 21	20	
	L 23:	E E 23	
	24:	E E 24	1i
Uper at i on.	25:		1
lear Information DTR RIS View File Show Time	26:		1
THEE String The Show In HEE Send With Enter	T 27:	E E 27	
put string.	1 28:		
Send Comman	1 29:	E E 29	
v	J	Ren Tiner	10
a	Load Test Script Clear All Command	s hun rives	

- ▶ 红色区域显示接收的数据
- ▶ 蓝色区域显示状态信息。
- ▶ 黄色区域用于发送数据或文件
- ▶ 绿色区域用于连续发送数据
 - (2) COM 端口配置
 - 根据 PC 和终端之间的连接,选择正确的串行端口。打开电脑的设备管理器, 在端口列表可以看到 PC 与开发板连接的端口号。

● 我这里显示的是 COM11, 所以要选择 COM11。

COM Port: 11 💌 Baudrate: 9600 💌 StopBits: 1 💌 Par					Parity: None 💌	
ByteSi	ze: 8	•	Flow Control: No Ctrl F	low 💌		Open Port

● 选择一个合适的波特率,模组默认的波特率为9600。

-COM Port Setting					
COM Port: 11 💌	Baudrate:	9600 💌	StopBits: 1 💌	Parity: None 💌	
		4800			
ByteSize: 8 🔻	Flow Cont	9600	Flow 💌	Open Port	
		38400			
		115200			
		230400			
		460800			
		321000			

● 其他参数默认配置。

(3) 打开 COM 端口

● 单击"Open Port"打开选定的 COM 端口

COM Port Setting				
COM Port: 11 💌	Baudrate: 9600 💌 StopBits: 🚺 💌	Parity: None 💌		
ByteSize: 8 💌	Flow Control: No Ctrl Flow 💌	Open Port		

- (4) 发送数据
- 在发送数据的窗口内可以输入 AT 指令与模块交互, 要勾选 Send with Enter

Operation				
Clear Information	🗆 DTR 🕅 RTS	View File	🔲 Show	/ Time
Input String:	THEX String	🗍 Show In HEX	🔽 Send	l With Enter
AT			$\langle \rangle$	Send Command
Select File				Send File

(5) 连续发送数据

	Command List					
Cho	ose All Commands		HEX	◄	Enter	Delay(mS)
1	ATI			\checkmark	1	
🗖 2:	AT +NRB			\checkmark	2	
🗖 3:				\checkmark	3	
1 4:				\checkmark	4	
5				\checkmark	5	
6				\checkmark	6	
□ 7:				\checkmark	7	
F 8:				\checkmark	8	
🗖 9:				\checkmark	9	
10:				\checkmark	10	
🔲 11 :				$\overline{\mathbf{v}}$	11	
🔲 12 :				\checkmark	12	
🔲 13 :				\checkmark	13	
🔲 14 :				\checkmark	14	
1 5 :				\checkmark	15	
🔲 16:				\checkmark	16	
🗖 1 🗄				\checkmark	17	
🔲 18 :				\checkmark	18	
🔲 19 :				$\overline{}$	19	
E 20:				\checkmark	20	
🗖 21 :				\checkmark	21	
🗖 22::				\checkmark	22	
🗖 23 :				\checkmark	23	
🗖 24 :				\checkmark	24	
E 25 :				\checkmark	25	
🔲 26:				\checkmark	26	
21				V	27	
28				$\overline{\checkmark}$	28	
2 9				$\overline{\checkmark}$	29	
		1		Ru	Times:	10
Load	Test Script Clear Al	1 Commands	Dela	уT	ime(mS):	1000
Sav	e As Script			Run		Stop

- 红色区域用于发送数据。
- 蓝色区域用于输入将要发送的数据。
- 绿色区域用于启动数据发送。
- Choose All Commands: 启用所有可用的命令,这些命令将被发送。
- HEX: 输入字符串是六角字符串。

- Enter: 用 "Enter"发送数据。
- Delay: 每个数据的延迟时间。
- Delay Time: 默认延迟时间。
- Run Times: 连续发送所有选定数据的次数。
- Run: 开始连续发送所有选定的数据。
- Stop: 停止发送所有选定的数据。
- Save As Script:保存所有数据并配置为 ini 文件。
- Load Test Script:加载数据并从 ini 文件中进行配置。

3) 信号测试步骤

IoT-CluB

物联网俱乐部

IoT

(1) 查询射频开关状态

指令: AT+CFUN?(注意此"?"为英文输入法下的问号,下同)

	-COM Port Setting	Command List
	COM Port: 9 - Baudrate: 9600 - StopBits: 1 - Parity: None -	Choose All Commands HEX [Enter
		□ 1: AT+CFUN? □ ▼ [1]
	ByteSize: 8 - Flow Control: No Ctrl Flow - Close Port	□ 2: □ □ □ □ □
		□ 3: □ ↓ 3
	[2019-01-25 20:50:21:559]	□ 4: □ ▼ 4
	[2019-01-25_20:50:21:559]+CFUN:1	5: 5
		E 6: E 6
	[2019-01-25_20:50:21:559]0K	□ 7: □ ⊽ 7
1		

说明:当前我查到的射频开关状态是"1",表示射频开关处于打开状态,若你查询到的射频开关状态是"0",先等个 10 秒左右再查,如果依旧是 0 的话,一般就是模组和 SIM 卡没有正常连接,这个时候你要检查你的硬件电路是否有问题。

- (2) 查询当前信号强度
- 指令: AT+CSQ

Command List HEX 🕅 Enter 1 ☑ 2 7 Г 3 Г • 4 $\overline{\mathbf{v}}$ 5 Г • 6 Ē $\overline{\mathbf{v}}$ 7 Γ $\mathbf{\nabla}$ 8 Г ~ 9 Г $\mathbf{\nabla}$ 10

说明:当前我这返回结果为+CSQ:22,99。前面这个 22 就是信号强度,这个取值范围是 0-31 的一个数值,当这个数为 99 的时候,就说明没有获取到信号,这个时候我们可能需要多等一会儿,根据不同的地点,所等待时间在 1-60s 内,如果超过这个时间依旧返回的结果是+CSQ:99,99 的话,则表示没有 NB 信号。

(3) 查询当前信号质量参数

指令1:AT+NUESTATS

COM Port Setting	Command List			
COM Port: 9 V Baudrate: 9600 V StopBits: 1 V Parity: None V	🗌 Choose All Commands	HEX		Enter
	1: AT+CFUN?		◄	1
ByteSize: 8 - Flow Control: No Ctrl Flow - Close Port	2: AT+CSQ		\checkmark	2
	3: AT+NUESTATS		$\overline{\mathbf{v}}$	3
[2019-01-25 20:59:37:805]	Ĩ ☐ 4:		\checkmark	4
[2019-01-25_20:59:37:805]Signal power:-705	5:		\checkmark	5
[2019-01-25_20:59:37:805]Total power:-639	6:		$\overline{\mathbf{v}}$	6
[2019-01-25_20:59:37:838]TX power:-40	7:	— г	$\overline{\mathbf{v}}$	7
[2019-01-25_20:59:37:838]TX time:954	8:			8
[2019-01-25_20:59:37:872]RX time:21380				0
L2019-01-25_20:59:37:872JCell ID:67265622	3.	_	V	3
[2019-01-25_20:59:37:905]ECL:0	10:		\checkmark	10
[2019-01-25_20:59:37:905]SMR:98	11:		$\mathbf{\nabla}$	11
[2019-01-25_20:59:37:905]EARFCN:2509	L 12:			12
[2019-01-25_20:59:37:905]PCI:167			-	10
[2019-01-25_20:59:37:939]RSRQ:-109		_	~	13
[2019-01-25_20:59:37:939]OPERATOR MODE:4	14:		\checkmark	14
	15 :		$\overline{\mathbf{v}}$	15
[2019-01-25_20:59:37:949]0K	☐ 16:		$\overline{\checkmark}$	16

以上关键参数解释请参考第三节参数说明。

指令 2: AT+NUESTATS=CELL

CUM Fort Setting	Command List
COM Port: 9 V Baudrate: 9600 V StopBits: 1 V Parity: None V	🗌 Choose All Commands HEX 🗌 Enter
	□ 1: AT+CFUN? □ 🔽 1
ByteSize: 8 - Flow Control: No Ctrl Flow - Close Port	□ 2: AT+CSQ □ 🔽 2
	🗆 3: AT +NUESTATS
[2019-01-25_21:04:09:922]	4: AT +NUESTATS=CELL
[2019-01-25_21:04:09:922]NUESTATS:CELL, 2509, 167, 1, -736, -114, -663, 73	5: 5
	☐ 6: ☐ 🔽 6
[2019-01-25_21:04:09:944]0K	7: 7

该指令返回参数格式如下:

NUESTATS:CELL,<earfcn>,<physical cell id>,<primarycell>,<rsrp>,<rsrq>,<rssi>,<snr>

以上关键参数解释请参考第三节参数说明。

(4) Ping 测试

指令: AT+NPING=180.101.147.115

-COM Port Setting		Command List			
COM Port: 9 - Baudrate: 9600 - StopBits: 1 - Parity: W	one 🔻	🦳 Choose All Commands	HEX 🕅 Enter		
, _ , _ , _ ,		1: AT +CFUN?		\checkmark	1
ByteSize: 8 - Flow Control: No Ctrl Flow - Clos	e Port	2: AT+CSQ		◄	2
		3: AT +NUESTATS		✓	3
[2019-01-25 21:33:36:549]		4: AT +NUESTATS=CELL			4
[2019-01-25_21:33:36:549]0K		5: AT+NPING=180.101.147.115			5
[2019-01-25_21:33:37:334]		6:			6
[2019-01-25_21:33:37:334]+NPING:180.101.147.115,122,634		□ 7: □		₹	7

说明:这里的 122 表示我此次 PING 的 TTL 值, 634 表示网络延时 634ms。