

AirPrime HL7539

Product Technical Specification

4118584 8.0 September 19, 2017

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where cellular modems are not advised without proper device certifications. These areas include environments where cellular radio can interfere such as explosive atmospheres, medical equipment, or any other equipment which may be susceptible to any form of radio interference. The Sierra Wireless modem can transmit signals that could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem **MUST BE POWERED OFF**. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note:

Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.

Limitations of Liability

This manual is provided "as is". Sierra Wireless makes no warranties of any kind, either expressed or implied, including any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

Patents

This product may contain technology developed by or for Sierra Wireless Inc.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents licensed from MMP Portfolio Licensing.

Copyright

© 2017 Sierra Wireless. All rights reserved.

Trademarks

Sierra Wireless[®], AirPrime[®], AirLink[®], AirVantage[®], WISMO[®], ALEOS[®] and the Sierra Wireless and Open AT logos are registered trademarks of Sierra Wireless, Inc. or one of its subsidiaries.

Watcher® is a registered trademark of NETGEAR, Inc., used under license.

Windows® and Windows Vista® are registered trademarks of Microsoft Corporation.

Macintosh® and Mac OS X® are registered trademarks of Apple Inc., registered in the U.S. and other countries.

QUALCOMM® is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of their respective owners.

Contact Information

Sales information and technical support, including warranty and returns	Web: sierrawireless.com/company/contact-us/ Global toll-free number: 1-877-687-7795 6:00 am to 5:00 pm PST
Corporate and product information	Web: sierrawireless.com

Document History

Version	Date	Updates		
1.0	December 30, 2015	Creation		
1.1	January 04, 2016	Updated: Table 2 General Features 1.5 Interfaces		
2.0	February 26, 2016	Updated: • 3.10 POWER-ON Signal (PWR_ON_N) • 5.2 Module Switch-Off • Table 31 Ordering Information		
3.0	May 31, 2016	Added 5.5 Power Supply Design		
4.0	September 14, 2016	Added 5.8 Radio Integration Updated: • PWR_ON_N pull up resistor value from 47kΩ to 100kΩ • Table 31 Ordering Information		
5.0	February 09, 2017	Updated the voltage range of USB_VBUS		
6.0	May 05, 2017	Updated Table 15 UART1 Pad Description		
7.0	June 30, 2017	Updated Table 13 Digital I/O Electrical Characteristics		
7.1	July 04, 2017	Updated Table 1 Supported Bands/Connectivity		
7.2	July 20, 2017	Deleted HSIC Updated Table 1 Supported Bands/Connectivity		
8.0	September 19, 2017	Updated RESET_N to RESET_IN_N		

->> Contents

1.	INTRO	ODU	CTION	9
	1.1.	Con	nmon Flexible Form Factor (CF³)	9
	1.2.	Phys	sical Dimensions	9
	1.3.	Gen	neral Features	10
	1.4.	Arch	nitecture	11
	1.5.	Inter	rfaces	11
	1.6.	Con	nection Interface	12
	1.7.	ESD)	12
	1.8.	Envi	ironmental and Certifications	13
		3.1.	Environmental Specifications	
		3.2.	RoHS Directive Compliant	
		3.3.	Disposing of the Product	
_	1.9.		erences	
2.			INITION	
	2.1.	Pad	Configuration (Top View, Through Module)	19
3.	DETA	ILE	D INTERFACE SPECIFICATIONS	20
	3.1.	Pow	ver Supply	20
	3.2.	Curr	rent Consumption	20
	3.3.	VGF	PIO	21
	3.4.	BAT	RTC	21
	3.5.	SIM	Interface	
	3.5	5.1.	UIM1_DET	
	3.6.		3	
	3.7.		ctrical Information for Digital I/O	
	3.8.		neral Purpose Input/Output (GPIO)	
	3.9.		n Serial Link (UART1)	
	3.10.		WER-ON Signal (PWR_ON_N)	
	3.11.	Res	et Signal (RESET_IN_N)	25
	3.12.	Ana	log to Digital Converter (ADC1)	26
	3.13.	Cloc	ck Interface	26
	3.14.	PCN	И	27
	3.15.		oug Interfaces	
		5.1.	Trace Debug	
		5.2.	JTAG	
	3.16. 3.1	- KF 1 6.1.	Interface	
		6.2.	RF Performances	

	3.1	16.3. TX_ON Indicator (TX_ON)	31
4.	MECH	HANICAL DRAWINGS	32
5.	DESIG	IGN GUIDELINES	35
	5.1.	Power-Up Sequence	35
	5.2.	Module Switch-Off	36
	5.3.	Emergency Power OFF	36
	5.4.	Sleep Mode Management	
	5.4	4.1. Using UART1	
	5.4	4.2. Using USB	37
	5.5.	Power Supply Design	37
	5.6.	ESD Guidelines for SIM Card	37
	5.7.	ESD Guidelines for USB	38
	5.8.	Radio Integration	39
6.	X-RA	AY EXPOSURE	40
7.	ORDE	ERING INFORMATION	41
8.	TERM	MS AND ABBREVIATIONS	42

6

List of Figures

Figure 1.	Architecture Overview	11
Figure 2.	Mechanical Overview	12
Figure 3.	Pad Configuration	19
Figure 4.	PCM Master Mode Timing Waveform	28
Figure 5.	PCM Slave Mode Timing Waveform	29
Figure 6.	TX_ON State during Transmission	31
Figure 7.	Mechanical Drawing	32
Figure 8.	Dimensions Drawing	33
Figure 9.	Footprint	34
Figure 10.	PWR_ON_N Sequence with VGPIO Information	35
Figure 11.	VBATT Ramp Up Timing	35
Figure 12.	Power OFF Sequence for PWR_ON_N, VGPIO	36
Figure 13.	Voltage Limiter Example	37
Figure 14.	EMC and ESD Components Close to the SIM	38
Figure 15.	ESD Protection for USB	38
Figure 16.	GSM Antenna Connection with Antenna Detection	39

4118584 Rev 8.0 September 19, 2017 7

List of Tables

l able 1.	Supported Bands/Connectivity	9
Table 2.	General Features	10
Table 3.	ESD Specifications	12
Table 4.	Environmental Specifications	13
Table 5.	Pad Definition	15
Table 6.	Power Supply	20
Table 7.	Current Consumption	20
Table 8.	VGPIO Electrical Characteristics	21
Table 9.	BAT_RTC Electrical Characteristics	21
Table 10.	UIM1 Pad Description	22
Table 11.	Electrical Characteristics of UIM1	22
Table 12.	USB Pad Description	22
Table 13.	Digital I/O Electrical Characteristics	23
Table 14.	GPIO Pad Description	23
Table 15.	UART1 Pad Description	24
Table 16.	PWR_ON_N Electrical Characteristics	25
Table 17.	RESET_IN_N Electrical Characteristics	25
Table 18.	ADC Interface Pad Description	26
Table 19.	ADC Electrical Characteristics	26
Table 20.	Clock Interface Pad Description	26
Table 21.	PCM Interface Pad Description	27
Table 22.	PCM Master Mode Parameters	27
Table 23.	PCM Slave Mode Parameters	28
Table 24.	Trace Debug Pad Description	29
Table 25.	JTAG Pad Description	30
Table 26.	RF Main Connection	30
Table 27.	RF Diversity Connection	30
Table 28.	Conducted RX Sensitivity (dBm)	31
Table 29.	TX_ON Pad Description	31
Table 30.	TX_ON Characteristics	31
Table 31	Ordering Information	41

8

1. Introduction

This document is the Product Technical Specification for the AirPrime HL7539 Embedded Module. It defines the high-level product features and illustrates the interfaces for these features. This document is intended to cover the hardware aspects of the product, including electrical and mechanical.

The AirPrime HL7539 belongs to the AirPrime HL Series from Essential Connectivity Module family. These are industrial grade Embedded Wireless Modules that provide data connectivity on wireless networks (as listed in Table 1 Supported Bands/Connectivity).

The HL7539 supports a large variety of interfaces such as USB 2.0, UART and GPIOs to provide customers with the highest level of flexibility in implementing high-end solutions.

Table 1. Supported Bands/Connectivity

RF Band	Transmit Band (Tx)	Receive Band (Rx)	Maximum Output Power
LTE B1	1920 to 1980 MHz	2110 to 2170 MHz	Class 3 (+23 dBm ± 2 dBm)
LTE B19	830 to 845 MHz	875 to 890 MHz	Class 3 (+23 dBm ± 2 dBm)
LTE B21	1447.9 to 1462.9 MHz	1495.9 to 1510.9 MHz	Class 3 (+23 dBm ± 2 dBm)

1.1. Common Flexible Form Factor (CF³)

The AirPrime HL7539 belongs to the Common Flexible Form Factor (CF³) family of modules. This family consists of a series of WWAN modules that share the same mechanical dimensions (same width and length with varying thicknesses) and footprint. The CF³ form factor provides a unique solution to a series of problems faced commonly in the WWAN module space as it:

- Accommodates multiple radio technologies (from 2G to LTE advanced) and band groupings
- Supports bit-pipe (Essential Module Series) and value add (Smart Module Series) solutions
- Offers electrical and functional compatibility
- Provides Direct Mount as well as Socketability depending on customer needs

1.2. Physical Dimensions

AirPrime HL7539 modules are compact, robust, fully shielded modules with the following dimensions:

Length: 23 mmWidth: 22 mmThickness: 2.5 mm

Weight: 3.5 g

Note: Dimensions specified above are typical values.

1.3. General Features

The table below summarizes the AirPrime HL7539 features.

Table 2. General Features

Feature	Description
Physical	 Small form factor (146-pad solderable LGA pad) – 23mm x 22mm x 2.5mm (nominal) Complete body shielding RF connection pads (RF main interface) Baseband signals connection
Electrical	Single or double supply voltage (VBATT and VBATT_PA) – 3.2V – 4.5V
RF	Tri-band LTE: LTE B1: 2100 MHz FDD LTE B21: 1500 MHz FDD LTE B19: 850 MHz FDD
SIM interface	 1.8V/3V support SIM extraction / hot plug detection SIM/USIM support Conforms with ETSI UICC Specifications Supports SIM application tool kit with proactive SIM commands
Application interface	 Multiple non-multiplexed USB channel support Dial-up networking USB selective suspend to maximize power savings AT command interface – 3GPP 27.007 standard, plus proprietary extended AT commands
Protocol Stack	 Single mode LTE operation: LTE FDD, bandwidth 5-20 MHz System Release: 3GPP Rel. 9 Category 4 (up to 150 MBit/s in downlink, 50 MBit/s in uplink) MIMO 2x2 (Down Link) Max modulation 64 QAM DL, 16 QAM UL Intra-frequency and inter-frequency mobility
SMS	 SMS over SGs SMS MO and MT SMS Status Report SMS storing rules (support of AT+CNMI)
Connectivity	 Multiple (up to 20) cellular packet data profiles Sleep mode for minimum idle power draw Mobile-originated PDP context activation / deactivation Static and Dynamic IP address. The network may assign a fixed IP address or dynamically assign one using DHCP (Dynamic Host Configuration Protocol). Supports PAP and CHAP authentication protocols PDP context type (IPv4, IPv6, IPv4v6). IP Packet Data Protocol context RFC1144 TCP/IP header compression
Environmental	Operating temperature ranges (industrial grade): • Class A: -30°C to +70°C • Class B: -40°C to +85°C
RTC	Real Time Clock (RTC) with calendar

1.4. Architecture

The figure below presents an overview of the AirPrime HL7539's internal architecture and external interfaces.

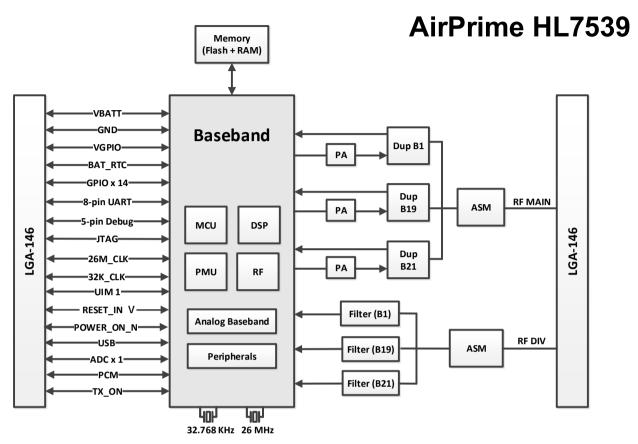


Figure 1. Architecture Overview

1.5. Interfaces

The AirPrime HL7539 module provides the following interfaces and peripheral connectivity:

- 1x 8-pwire UART
- 1x Active Low RESET
- 1x USB 2.0
- 1x Backup Battery Interface
- 2x System Clock Out
- 1x Active Low POWER-ON
- 1x 1.8V/3V SIM
- 1x JTAG Interface
- 14x GPIOs (3 of which have multiplexes)
- 1x Main Antenna
- 1x RX Diversity Antenna
- 1x VGPIO

- 1x TX ON
- 1x ADC
- 1x PCM

1.6. Connection Interface

The AirPrime HL7539 module is an LGA form factor device. All electrical and mechanical connections are made through the 146 Land Grid Array (LGA) pads on the bottom side of the PCB.

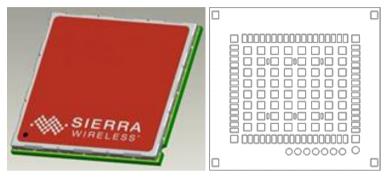


Figure 2. Mechanical Overview

The 146 pads have the following distribution:

- 66 inner signal pads, 1x0.5mm, pitch 0.8mm
- 1 reserved test point (do not connect), 1.0mm diameter
- 7 test point (JTAG), 0.8mm diameter, 1.20mm pitch
- 64 inner ground pads, 1.0x1.0mm, pitch 1.825mm/1.475mm
- 4 inner corner ground pads, 1x1mm
- 4 outer corner ground pads, 1x0.9mm

1.7. ESD

Refer to the following table for ESD Specifications.

Table 3. ESD Specifications

Category	Connection	Specification		
Operational	RF ports	IEC-61000-4-2 — Level (Electrostatic Discharge Immunity Test)		
Non-operational	Host connector interface	Unless otherwise specified: • JESD22-A114 ± 2kV Human Body Model • JESD22-A115 ± 200V Machine Model		
		 JESD22-C101C ± 500V Charged Device Model 		
Signals	SIM connector	Adding ESD protection is highly recommended at the point where		
	Other host signals	the USIM contacts are exposed, and for any other signals that would be subjected to ESD by the user.		

1.8. Environmental and Certifications

1.8.1. Environmental Specifications

The environmental specification for both operating and storage conditions are defined in the table below.

Table 4. Environmental Specifications

Conditions	Range		
Operating Class A	-30°C to +70°C		
Operating Class B	-40°C to +85°C		
Storage	-40°C to +85°C		

Class A is defined as the operating temperature ranges that the device:

- Shall exhibit normal function during and after environmental exposure.
- Shall meet the minimum requirements of 3GPP or appropriate wireless standards.

Class B is defined as the operating temperature ranges that the device:

- Shall remain fully functional during and after environmental exposure
- Shall exhibit the ability to establish an SMS or DATA call (emergency call) at all times even
 when one or more environmental constraint exceeds the specified tolerance.
- Unless otherwise stated, full performance should return to normal after the excessive constraint(s) have been removed.

1.8.2. RoHS Directive Compliant

The AirPrime HL7539 module is compliant with RoHS Directive 2011/65/EU which sets limits for the use of certain restricted hazardous substances. This directive states that "from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)".

1.8.3. Disposing of the Product

This electronic product is subject to the EU Directive 2012/19/EU for Waste Electrical and Electronic Equipment (WEEE). As such, this product must not be disposed of at a municipal waste collection point. Please refer to local regulations for directions on how to dispose of this product in an environmental friendly manner.

1.9. References

[1] AirPrime HL Series Customer Process Guidelines

Reference Number: 4114330

[2] AirPrime HL7539 AT Commands Interface Guide

Reference Number: 4118453

2. Pad Definition

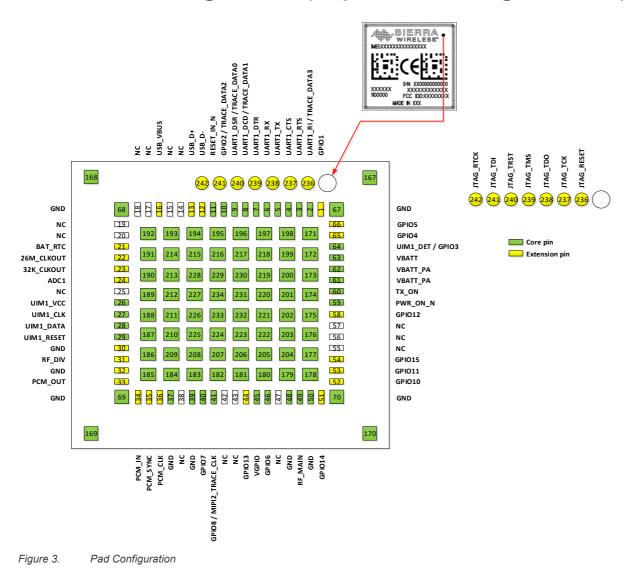
AirPrime HL7539 pads are divided into 2 functional categories.

- Core functions and associated pads cover all the mandatory features for M2M connectivity and will be available by default across all CF³ family of modules. These Core functions are always available and always at the same physical pad locations. A customer platform using only these functions and associated pads is guaranteed to be forward and/or backward compatible with the next generation of CF³ modules.
- Extension functions and associated pads bring additional capabilities to the customer. Whenever an Extension function is available on a module, it is always at the same pad location.

Other pads marked as "not connected" or "reserved" should not be used.

Table 5. Pad Definition

Pad #	Signal Name	Function	I/O	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
1	GPIO1	General purpose input/output	I/O		1.8V	Left Open	Extension
2	UART1_RI / TRACE_DATA3	UART1 Ring indicator / Trace data 3	0		1.8V	Connect to test point	Core
3	UART1_RTS	UART1 Request to send	I	L	1.8V	Connect to test point	Core
4	UART1_CTS	UART1 Clear to send	0	L	1.8V	Connect to test point	Core
5	UART1_TX	UART1 Transmit data	I		1.8V	Connect to test point	Core
6	UART1_RX	UART1 Receive data	0		1.8V	Connect to test point	Core
7	UART1_DTR	UART1 Data terminal ready	1	L	1.8V	Connect to test point	Core
8	UART1_DCD / TRACE_DATA1	UART1 Data carrier detect / Trace data 1	0	L	1.8V	Connect to test point	Core
9	UART1_DSR / TRACE_DATA0	UART1 Data set ready / Trace data 0	0	L	1.8V	Connect to test point	Core
10	GPIO2 / TRACE_DATA2	General purpose input/output / Trace data 2	I/O		1.8V	Connect to test point	Core


Pad #	Signal Name	Function	I/O	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
11	RESET_IN_N	Input reset signal	I	L	1.8V	Left Open	Core
12	USB_D-	USB Data Negative (Low / Full Speed)	I/O		3.3V	Connect to test point	Extension
12	U3B_D-	USB Data Negative (High Speed)	1/0		0.38V	Connect to test point	Extension
13	USB D+	USB Data Positive (Low / Full Speed)	I/O		3.3V	Connect to test point	Extension
10	000_01	USB Data Positive (High Speed)	1/0		0.38V	Cormost to tool point	EXICIISION
14	NC	Not Connected					Not connected
15	NC	Not Connected					Not connected
16	USB_VBUS	USB VBUS	I		3.3V - 5.5V	Connect to test point	Extension
17	NC	Not Connected (Reserved for future use)				Left Open	Not connected
18	NC	Not Connected (Reserved for future use)				Left Open	Not connected
19	NC	Not Connected (Reserved for future use)				Left Open	Not connected
20	NC	Not Connected (Reserved for future use)				Left Open	Not connected
21	BAT_RTC	Power supply for RTC backup	I/O		1.8V	Left Open	Extension
22	26M_CLKOUT	26MHz System Clock Output	0		1.8V	Left Open	Extension
23	32K_CLKOUT	32.768kHz System Clock Output	0		1.8V	Left Open	Extension
24	ADC1	Analog to digital converter	I		1.2V	Left Open	Extension
25	NC	Not Connected (Reserved for future use)				Left Open	Not connected
26	UIM1_VCC	1.8V/3V SIM1 Power supply	0		1.8V/3V	Mandatory connection	Core
27	UIM1_CLK	1.8V/3V SIM1 Clock	0		1.8V/3V	Mandatory connection	Core
28	UIM1_DATA	1.8V/3V SIM1 Data	I/O		1.8V/3V	Mandatory connection	Core
29	UIM1_RESET	1.8V/3V SIM1 Reset	0	L	1.8V/3V	Mandatory connection	Core
30	GND	Ground	0V		0V	Mandatory connection	Extension
31	RF_DIV	RF Input - Diversity				Mandatory connection	Extension
32	GND	Ground	0V		0V	Mandatory connection	Extension
33	PCM_OUT	PCM data out	0		1.8V	Left Open	Extension

Pad #	Signal Name	Function	I/O	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
34	PCM_IN	PCM data in	I		1.8V	Left Open	Extension
35	PCM_SYNC	PCM sync out	I/O		1.8V	Left Open	Extension
36	PCM_CLK	PCM clock	I/O		1.8V	Left Open	Extension
37	GND	Ground	0V		0V	Mandatory connection	Core
38	NC	Not Connected (Reserved for future use)				Left Open	Not connected
39	GND	Ground	0V		0V	Mandatory connection	Core
40	GPIO7	General purpose input/output	I/O		1.8V	Left Open	Core
41	GPIO8 / MIPI2_TRACE_CLK	General purpose input/output / Trace clock	I/O		1.8V	Connect to test point	Core
42	NC	Not Connected (Reserved for future use)				Left Open	Not connected
43	NC	Not Connected (Reserved for future use)				Left Open	Not connected
44	GPIO13	General purpose input/output	0		1.8V	Left Open	Extension
45	VGPIO	GPIO voltage output	0		1.8V	Left Open	Core
46	GPIO6	General purpose input/output	I/O		1.8V	Left Open	Core
47	NC	Not Connected (Reserved for future use)				Left Open	Not connected
48	GND	Ground	0V		0V	Mandatory connection	Core
49	RF_MAIN	RF Input/output				Mandatory connection	Core
50	GND	Ground	0V		0V	Mandatory connection	Core
51	GPIO14	General purpose input/output	1		1.8V	Left Open	Extension
52	GPIO10	General purpose input/output	I/O		1.8V	Left Open	Extension
53	GPIO11	General purpose input/output	I/O	I/O 1.8V		Left Open	Extension
54	GPIO15	General purpose input/output	I/O	I/O 1.8V		Left Open	Extension
55	NC	Not connected				Left Open	Not connected
56	NC	Not connected				Left Open	Not connected
57	NC	Not connected				Left Open	Not connected

Pad #	Signal Name	Function	I/O	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
58	GPIO12	General purpose input/output	I/O		1.8V	Left Open	Extension
59	PWR_ON_N	Active Low Power On control signal	I	L	1.8V	Mandatory connection	Core
60	TX_ON	TX indicator	0		2.3V	Left Open	Core
61	VBATT_PA	Power supply (refer to section 3.1 Power Supply for more information)	1		3.2V (min) 3.7V (typ) 4.5V (max)	Mandatory connection	Core
62	VBATT_PA	Power supply (refer to section 3.1 Power Supply for more information)	1		3.2V (min) 3.7V (typ) 4.5V (max)	Mandatory connection	Core
63	VBATT	Power supply	1		3.2V (min) 3.7V (typ) 4.5V (max)	Mandatory connection	Core
64	UIM1_DET / GPIO3	UIM1 Detection / General purpose input/output	I/O	Н	1.8V	Left Open	Core
65	GPIO4	General purpose input/output	I/O		1.8V	Left Open	Extension
66	GPIO5	General purpose input/output	I/O		1.8V	Left Open	Extension
67-70	GND	Ground	GND		0V		Core
71 - 166	Note: These p	ads are not available on the AirPrime HL7539	module.				
167 - 234	GND	Ground	GND		0V		Core
236	JTAG_RESET	JTAG RESET	1	L	1.8V	Left Open	Extension
237	JTAG_TCK	JTAG Test Clock	1		1.8V	Left Open	Extension
238	JTAG_TDO	JTAG Test Data Output	0		1.8V	Left Open	Extension
239	JTAG_TMS	JTAG Test Mode Select	I		1.8V	Left Open	Extension
240	JTAG_TRST	JTAG Test Reset	I	L	1.8V	Left Open	Extension
241	JTAG_TDI	JTAG Test Data Input	1		1.8V	Left Open	Extension
242	JTAG_RTCK	JTAG Returned Test Clock	0		1.8V	Left Open	Extension

Product Technical Specification Pad Definition

2.1. Pad Configuration (Top View, Through Module)

3. Detailed Interface Specifications

Note:

If not specified, all electrical values are given for VBATT=3.7V and an operating temperature of 25°C.

For standard applications, VBATT and VBATT_PA must be tied externally to the same power supply. For some specific applications, AirPrime HL7539 module supports separate VBATT and VBATT_PA connection if requirements below are fulfilled.

3.1. Power Supply

The AirPrime HL7539 module is supplied through the VBATT signal with the following characteristics.

Table 6. Power Supply

Supply	Minimum	Typical	Maximum
VBATT voltage (V)	3.2*	3.7	4.5
VBATT_PA voltage (V) Full Specification	3.2*	3.7	4.5

This value should be guaranteed during the burst.

Note:

Load capacitance for VBATT is around $32\mu\text{F} \pm 20\%$ embedded inside the module. Load capacitance for VBATT_PA is around $10\mu\text{F} \pm 20\%$ embedded inside the module.

3.2. Current Consumption

The following table lists the current consumption of the AirPrime HL7539 at different conditions.

Table 7. Current Consumption

Parameter		Minimum	Typical	Maximum	Unit
Off mode		95.0	110	202.0	μA
Sleep mode – LTE DRX = 1.28s	Band 1	1.2	1.4	6.2	mA
	Band 21	1.2	1.4	6.2	mA
USB = suspended	Band 19	1.2	1.4	6.2	mA
LTE in	Band 1	530	640	700	mA
communication mode (TX Max)	Band 21	510	530	570	mA
	Band 19	520	540	580	mA

3.3. **VGPIO**

The VGPIO output can be used to:

- Pull-up signals such as I/Os
- Supply the digital transistors driving LEDs

The VGPIO output is available when the AirPrime HL7539 module is switched ON.

Table 8. VGPIO Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Remarks
Voltage level (V)	1.7	1.8	1.9	Both active mode and sleep mode
Current capability (mA)	-	-	50	
Rise Time (ms)	-	-	1.5	Start-Up time from 0V

3.4. BAT_RTC

The AirPrime HL7539 module provides an input/output to connect a Real Time Clock power supply.

This pad is used as a back-up power supply for the internal Real Time Clock. The RTC is supported when VBATT is available but a back-up power supply is needed to save date and hour when VBATT is switched off.

If VBATT is available, the back-up battery can be charged by the internal 1.8V power supply regulator.

Table 9. BAT_RTC Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Unit
Input voltage	-	1.8	-	V
Input current consumption	-	2.5	-	μA
Output voltage	-5%	1.8	+5%	٧
Max charging current (@VBATT=3.7V)	-	25	-	mA

3.5. SIM Interface

The AirPrime HL7539 has one physical SIM interfaces, UIM1.

UIM1 allows control of a 1.8V/3V SIM and is fully compliant with GSM 11.11 recommendations concerning SIM functions.

The five signals used by UIM1 are as follows:

UIM1_VCC: power supply

UIM1_CLK: clock

UIM1_DATA: I/O port

UIM1_RESET: reset

UIM1_DET: SIM detection

Table 10. UIM1 Pad Description

Pad #	Signal Name	Description	Multiplex
26	UIM1_VCC	1.8V/3V SIM1 Power supply	
27	UIM1_CLK	1.8V/3V SIM1 Clock	
28	UIM1_DATA	1.8V/3V SIM1 Data	
29	UIM1_RESET	1.8V/3V SIM1 Reset	
64	UIM1_DET	UIM1 Detection	GPIO3

Table 11. Electrical Characteristics of UIM1

Parameter	Minimum	Typical	Maximum	Remarks
UIM1 Interface Voltage (V)	-	2.9	-	The appropriate output
(VCC, CLK, IO, RST)	-	1.80	-	voltage is auto detected and selected by software.
UIM1 Detect	-	1.80	-	High active
UIM1_VCC Current (mA)	-	-	10	Max output current in sleep mode = 3 mA
UIM1_VCC Line Regulation (mV/V)	-	-	50	At lout_Max
UIM1_VCC Power-up Setting Time (µs) from power down	-	10	-	

3.5.1. **UIM1_DET**

UIM1_DET is used to detect and notify the application about the insertion and removal of a SIM device in the SIM socket connected to the SIM interface. When a SIM is inserted, the state of UIM1_DET transitions from logic 0 to logic 1. Inversely, when a SIM is removed, the state of UIM1_DET transitions from logic 1 to logic 0.

Enabling or disabling either SIM detect feature can be done using the AT+KSIMDET command. For more information about this command, refer to document [2] AirPrime HL7539 AT Commands Interface Guide.

3.6. USB

The AirPrime HL7539 has one USB interface.

Table 12. USB Pad Description

Pad Number	Signal Name	I/O	Function
12	USB_D-	I/O	USB Data Negative
13	USB_D+	I/O	USB Data Positive
16	USB_VBUS	I	USB VBUS

Note: When a USB supply is not available, connect USB_VBUS to VBATT to supply the USB interface. USB_VBUS will have a voltage range of 3.3V to 4.5V when connected to VBATT.

3.7. Electrical Information for Digital I/O

The table below enumerates the electrical characteristics of the following digital interfaces:

- UART
- GPIOs
- JTAG
- RESET

Table 13. Digital I/O Electrical Characteristics

Parameter	Symbol	Minimum	Maximum
Input Current-High (μA)	Іін	-	-240
Input Current-Low (µA)	l _{IL}	-	240
DC Output Current-High (mA)	Іон	-	6
DC Output Current-Low (mA)	loL	-6	-
Input Voltage-High (V)	V _{IH}	1.33	1.90
Input Voltage-Low (V)	VIL	-0.20	0.34
Output Voltage-High (V)	Voн	1.45	-
Output Voltage-Low (V)	VoL	-	0.35

3.8. General Purpose Input/Output (GPIO)

The AirPrime HL7539 modules provide 14 GPIOs, 3 of which have multiplexes.

Table 14. GPIO Pad Description

Pad Number	Signal Name	Multiplex	I/O	Power Supply Domain
1	GPIO1		I/O	1.8V
10	GPIO2	TRACE_DATA2	I/O	1.8V
40	GPI07		I/O	1.8V
41	GPIO8	MIPI2_TRACE_CLK	I/O	1.8V
44	GPIO13		I/O	1.8V
46	GPIO6		I/O	1.8V
51	GPIO14		I/O	1.8V
52	GPIO10		I/O	1.8V
53	GPIO11		I/O	1.8V
54	GPIO15		I/O	1.8V
58	GPIO12		I/O	1.8V
64	GPIO3	UIM1_DET	I/O	1.8V
65	GPIO4		I/O	1.8V
66	GPIO5		I/O	1.8V

3.9. Main Serial Link (UART1)

The main serial link (UART1) is used for communication between the AirPrime HL7539 module and a PC or host processor. It consists of a flexible 8-wire serial interface that complies with RS-232 interface.

The supported baud rates of the UART1 are 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 500000, 750000, 921600, 1843200, 3000000 and 3250000 bit/s.

The signals used by UART1 are as follows:

- TX data (UART1 TX)
- RX data (UART1 RX)
- Request To Send (UART1_RTS)
- Clear To Send (UART1_CTS)
- Data Terminal Ready (UART1_DTR)
- Data Set Ready (UART1_DSR)
- Data Carrier Detect (UART1_DCD)
- Ring Indicator (UART1_RI)

Note: Signal names are according to PC view.

UART1 pad description is summarized in the table below.

Table 15. UART1 Pad Description

Pad #	Signal Name*	I/O*	Description
2	UART1_RI	0	Signal incoming calls (data only), SMS, etc.
3	UART1_RTS	1	Request to send
4	UART1_CTS	0	AirPrime HL7539 is ready to receive AT commands
5	UART1_TX	1	Transmit data
6	UART1_RX	0	Receive data
7	UART1_DTR	I (active low)	Prevents the AirPrime HL7539 from entering sleep mode, switches between data mode and command mode, and wakes the module up.
8	UART1_DCD	0	Signal data connection in progress
9	UART1_DSR	0	Signal UART interface is ON

* According to PC view.

3.10. POWER-ON Signal (PWR_ON_N)

A low-level signal must be provided to switch the AirPrime HL7539 module ON.

It is internally connected to the permanent 1.8V supply regulator inside the HL7539 via a pull-up resistor. Once VBAT is supplied to the HL7539 module, this 1.8V supply regulator will be enabled and so the PWR_ON_N signal is by default at high level.

The PWR ON N signal's characteristics are listed in the table below.

Table 16. PWR ON N Electrical Characteristics

Parameter	Minimum	Typical	Maximum
Input Voltage-Low (V)		-	0.51
Input Voltage-High (V)	1.33	-	2.2
Power-up period (ms) from PWR_ON_N falling edge	2000	-	-
PWR_ON_N assertion time (ms)	25		

Note:

As PWR_ON_N is internally pulled up with $100k\Omega$, an open collector or open drain transistor must be used for ignition.

VGPIO is an output from the module that can be used to check if the module is active.

- When VGPIO = 0V, the module is OFF
- When VGPIO = 1.8V, the module is ON (it can be in idle, communication or sleep mode)

Note:

PWR_ON_N signal cannot be used to power the module off. To power the module off, use AT command AT+CFUN=0.

3.11. Reset Signal (RESET_IN_N)

To reset the module, a low-level pulse must be sent on the RESET_IN_N pad for 20ms. This action will immediately restart the AirPrime HL7539 module with the PWR_ON_N signal at low level. (If the PWR_ON_N signal is at high level, the module will be powered off.) As RESET_IN_N is internally pulled up, an open collector or open drain transistor should be used to control this signal.

The RESET_IN_N signal will reset the registers of the CPU and reset the RAM memory as well, for the next power on.

Note:

As RESET_IN_N is referenced to the VRTC ($200k\Omega$ pull-up resistor to VRTC 1.8V) an open collector or open drain transistor should be used to control this signal.

Table 17. RESET_IN_N Electrical Characteristics

Parameter	Minimum	Typical	Maximum
Input Voltage-Low (V)		-	0.51
Input Voltage-High (V)	1.33	-	2.2
Reset assertion time (ms)	20	-	-
Power-up period (ms) from RESET_IN_N falling edge*	2000	-	-

* With the PWR ON N Signal at low level

3.12. Analog to Digital Converter (ADC1)

One Analog to Digital Converter input, ADC1, is provided by the AirPrime HL7539 module. This converter is a 10-bit resolution ADC ranging from 0 to 1.2V.

The following table describes the pad description of the ADC interface.

Table 18. ADC Interface Pad Description

Pad Number	Signal Name	I/O	Description
24	ADC1	1	Analog to digital converter

Typical ADC1 use is for monitoring external voltage; such as in an application to safely power OFF an external supply in case of overvoltage.

ADC1's electrical characteristics are listed in the table below.

Table 19. ADC Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Remarks
ADC1 Resolution (bits)	-	10	-	
Input Voltage Range (V)	0	-	1.2	General purpose input
Update rate per channel (kHz)	-	-	125	
Integral Nonlinearity (bits)	-	-	± 2	LSB
Offset Error (bits)	-	-	± 1	LSB
Gain	849	853	858	
Input Resistance (MΩ)	1	-	-	
Input Capacitance (pF)	-	1	-	

3.13. Clock Interface

The AirPrime HL7539 modules support two digital clock interfaces.

The following table describes the pad description of the clock out interfaces.

Table 20. Clock Interface Pad Description

Pad Number	Signal Name	I/O	I/O Type	Description
22	26M_CLKOUT	0	1.8V	26MHz Digital Clock output
23	32K_CLKOUT	0	1.8V	32.768kHz Digital Clock output

Enabling or disabling the clock out feature can be done using AT commands. For more information about AT commands, refer to document [2] AirPrime HL7539 AT Commands Interface Guide.

3.14. PCM

The Digital Audio (PCM) Interface allows connectivity with standard audio peripherals. It can be used, for example, to connect an external audio codec.

The programmability of this interface allows addressing a large range of audio peripherals.

The signals used by the Digital Audio Interface are as follows:

- PCM_SYNC: The frame synchronization signal delivers an 8 kHz frequency pulse that synchronizes the frame data in and the frame data out.
- PCM CLK: The frame bit clock signal controls data transfer with the audio peripheral.
- PCM OUT: The frame "data out" relies on the selected configuration mode.
- PCM_IN: The frame "data in" relies on the selected configuration mode.

The following table describes the pad description of the PCM interface.

Table 21. PCM Interface Pad Description

Pad Number	Signal Name	I/O	Description
33	PCM_OUT	0	PCM data out
34	PCM_IN	1	PCM data in
35	PCM_SYNC	I/O	PCM sync out
36	PCM_CLK	I/O	PCM clock

Refer to the following table for the electrical characteristics of the digital audio interface in master mode.

Table 22. PCM Master Mode Parameters

Signal	Symbol	Minimum	Typical	Maximum	Unit
PCM_CLK period	t ₁	T - 4	Т	-	ns
PCM_CLK low time	t ₂	T/2 - 20	T/2	-	ns
PCM_CLK high time	t ₃	T/2 - 20	T/2	-	ns
PCM_SYNC high begin after PCM_CLK high begin	t ₄	-24	-	2 x t _{cp} + 12	ns
PCM_SYNC high end after PCM_CLK low end	t ₅	-24	-	2 x t _{cp} + 12	ns
PCM_OUT invalid before PCM_CLK low end	t ₆	-	-	24	ns
PCM_OUT valid after PCM_CLK high begin	t ₇	-	-	t _{cp} + 12	ns
PCM_IN setup time before PCM_CLK high end	t ₈	t _{cp} + 50	-	-	ns
PCM_IN hold time after PCM_CLK low begin	t ₉	12	-	-	ns

T = corresponds to the audio sampling rate (48KHz, 44.1KHz, 32KHz, 24KHz, 22.05KHz, 16KHz, 12KHz, 11.025KHz and 8KHz) and to the frame rate length (17 bit, 18 bit, 32 bit, 48 bit or 64 bit).

 t_{CP} = 9.6ns (clock period test condition)

The following figure shows the PCM timing waveform.

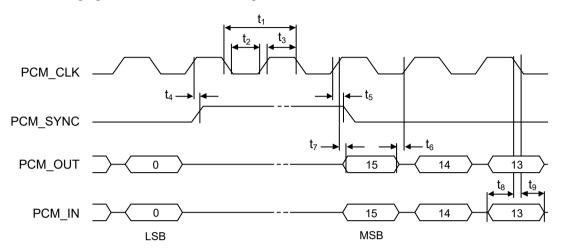


Figure 4. PCM Master Mode Timing Waveform

Refer to the following table for the electrical characteristics of the digital audio interface in slave mode.

Table 23. PCM Slave Mode Parameters

Signal	Symbol	Minimum	Typical	Maximum	Unit
PCM_CLK period	t ₁	Т			ns
PCM_CLK low time	t ₂	120			ns
PCM_CLK high time	t ₃	120			ns
PCM_SYNC high begin before PCM_CLK low begin (latching edge of PCM_CLK)	t ₄	2 x t _{cp} + 17			ns
PCM_SYNC low begin before PCM_CLK low begin (latching edge of PCM_CLK)	t ₅	2 x t _{cp} + 17			ns
PCM_OUT invalid before PCM_CLK rising edge (shifting edge of PCM_CLK)	t ₆			12	ns
PCM_OUT valid after PCM_CLK rising edge (shifting edge of PCM_CLK)	t ₇			3 x t _{cp} + 50	ns
PCM_IN setup time before PCM_CLK falling edge	t ₈	t _{cp} + 12			ns
PCM_IN hold time after PCM_CLK falling edge	t 9	24			ns

T = corresponds to the audio sampling rate (48KHz, 44.1KHz, 32KHz, 24KHz, 22.05KHz, 16KHz, 12KHz, 11.025KHz and 8KHz) and to the frame rate length (17 bit, 18 bit, 32 bit, 48 bit or 64 bit).

 t_{CP} = 9.6ns (clock period test condition)

The following figure shows the PCM slave mode timing waveform.

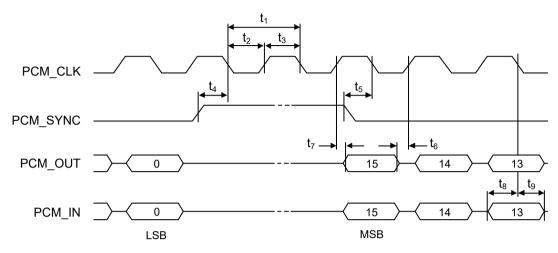


Figure 5. PCM Slave Mode Timing Waveform

3.15. Debug Interfaces

The AirPrime HL7539 module provides 2 interfaces for a powerful debug system.

3.15.1. Trace Debug

The AirPrime HL7539 module provides a Trace Debug interface, providing real-time instruction and data trace of the modem core.

Table 24. Trace Debug Pad Description

Pad Number	Signal Name	Function	Multiplex
2	TRACE_DATA3	Trace data 3	
8	TRACE_DATA1	Trace data 1	
9	TRACE_DATA0	Trace data 0	
10	TRACE_DATA2	Trace data 2	GPIO2
41	MIPI2_TRACE_CLK	Trace clock	GPIO8

Note: It is strongly recommended to provide access to this interface through Test Points.

3.15.2. JTAG

The JTAG interface provides debug access to the core of the HL7539. These JTAG signals are accessible through solder-able test points.

Table 25. JTAG Pad Description

Pad Number	Signal Name	Function
236	JTAG_RESET	JTAG RESET
237	JTAG_TCK	JTAG Test Clock
238	JTAG_TDO	JTAG Test Data Output
239	JTAG_TMS	JTAG Test Mode Select
240	JTAG_TRST	JTAG Test Reset
241	JTAG_TDI	JTAG Test Data Input
242	JTAG_RTCK	JTAG Returned Test Clock

Note:

It is recommended to provide access through Test Points to this interface the JTAG pads (for Failure Analysis debugging). All signals listed in table above shall be outputs on the customer board to allow JTAG debugging.

3.16. RF Interface

The RF interface of the HL7539 module allows the transmission of RF signals. This interface has a 50Ω nominal impedance.

3.16.1. RF Connection

A 50Ω stripline can be used to connect to standard RF connectors such as SMA, UFL, etc. for antenna connection.

Table 26. RF Main Connection

Pad Number	RF Signal	Impedance	VSWR Rx (max)	VSWR Tx (max)
49	RF_MAIN	50Ω	1.5:1	1.5:1

Table 27. RF Diversity Connection

Pad Number	RF Signal	Impedance	VSWR Rx (max)	VSWR Tx (max)
31	RF_DIV	50Ω	1.5:1	

3.16.2. RF Performances

RF performances are compliant with 3GPP recommendation TS 36.101.

Table 28. Conducted RX Sensitivity (dBm)

Frequenc	y Band	Primary (Typical)	Secondary (Typical)	SIMO (Typical)
LTE B1	Full RB; BW: 20 MHz*	-93.3	-93.3	-94.3
LTE B21	Full RB; BW: 15 MHz*	-94.5	-94.5	-95.5
LTE B19	Full RB; BW: 15 MHz*	-94.5	-94.5	-95.5

Sensitivity values scale with bandwidth: x_MHz_Sensitivity = 10 MHz_Sensitivity - 10*log (10 MHz/x_MHz)

3.16.3. TX_ON Indicator (TX_ON)

The AirPrime HL7539 module provides a signal, TX_ON, for TX indication. The TX_ON is a 2.3V signal and its status signal depends on the module transmitter state.

Refer to the following table for the status of the TX_ON signal depending on the embedded module's state.

Table 29. TX_ON Pad Description

Pad #	Signal Name	Function	I/O Type	Power Supply Domain
60	TX_ON	TX indicator	0	2.3V

Table 30. TX_ON Characteristics

Parameter	Minimum	Typical	Maximum
Tadvance	30µs		
T _{delay}		10µs	

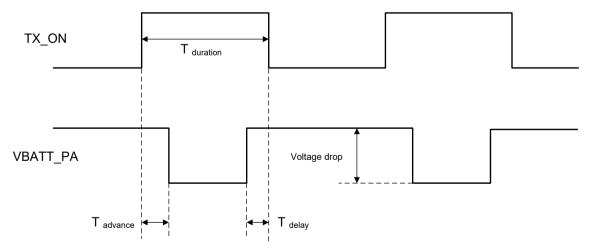


Figure 6. TX_ON State during Transmission

4. Mechanical Drawings

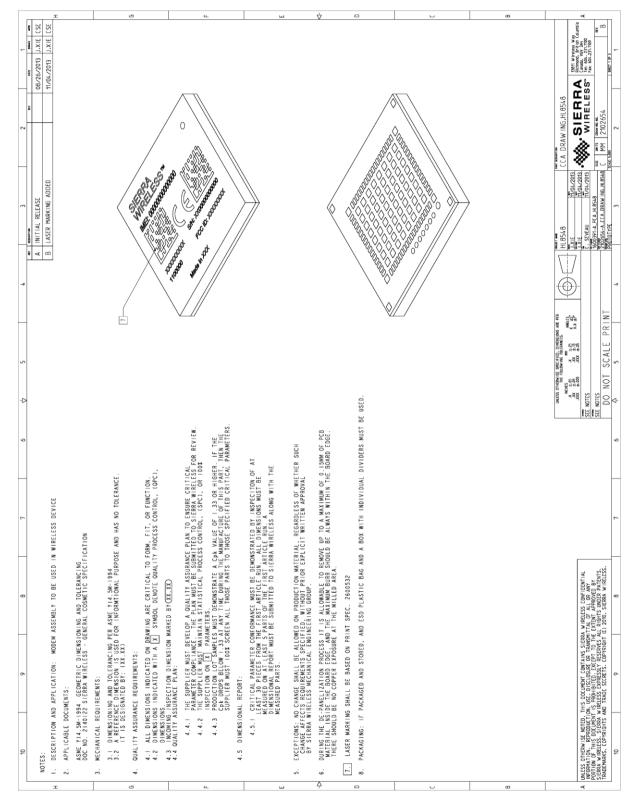


Figure 7. Mechanical Drawing

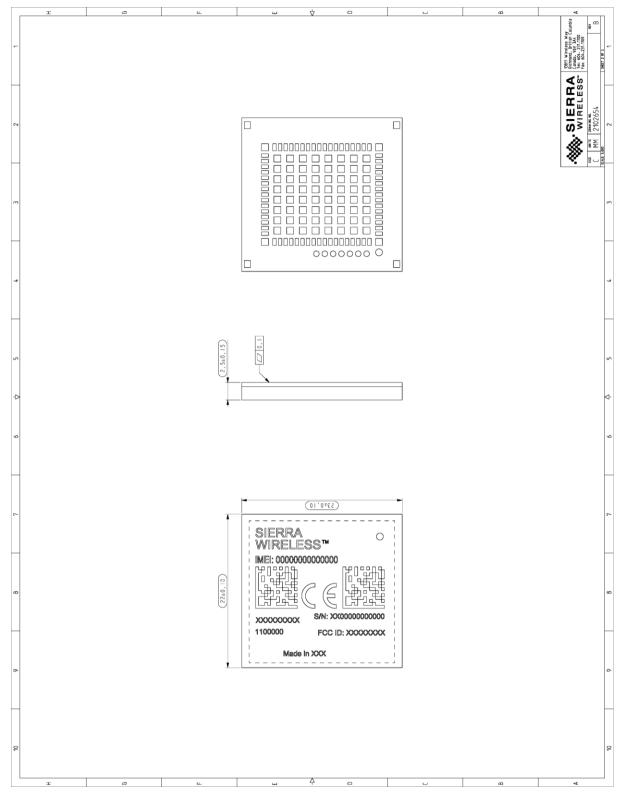


Figure 8. Dimensions Drawing

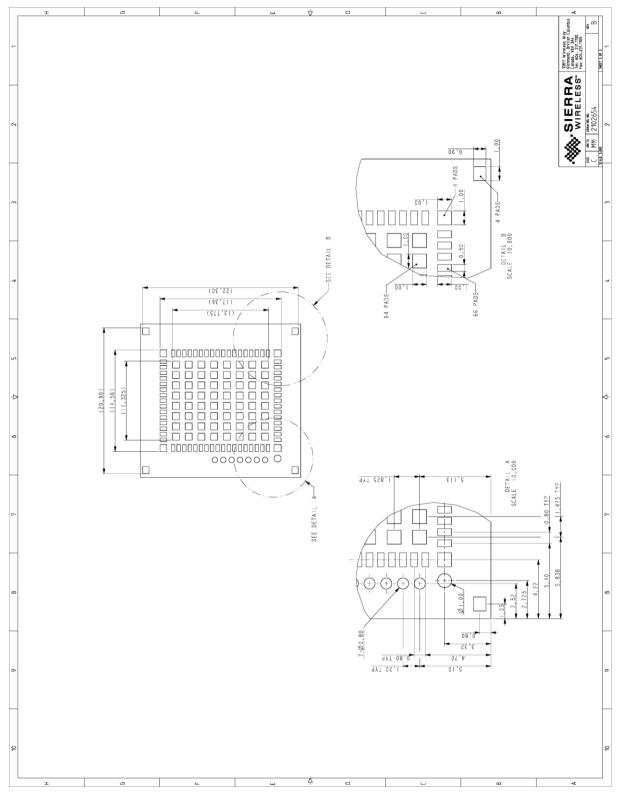
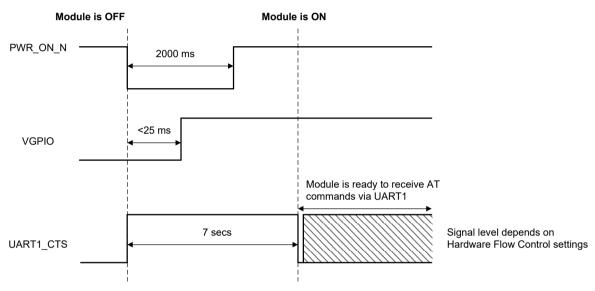


Figure 9. Footprint


>> 5. Design Guidelines

Power-Up Sequence

Apply a low-level logic to the PWR ON N pad (pad 59); within approximately 25ms, VGPIO will appear to be at 1.8V. Either UART1 or the USB interface could be used to send AT commands. The AT command interface is available in about 7 seconds after PWR ON N for either UART1 or USB.

When using UART1, the AT command interface is available after the transition of UART1 CTS from high to low level.

When using a USB connection, the HL7539 will start communicating with the host after USB enumeration. The time when AT commands can be sent will depend on the initialization time on the

PWR ON N Sequence with VGPIO Information Figure 10.

As PWR ON N is internally pulled up with $100k\Omega$, an open collector or open drain transistor must Note: be used for ignition.

The PWR ON N pad has the minimum assertion time requirement of 25ms, with LOW active. Once the valid power on trigger is detected, the PWR ON N pad status can be left open.

The maximum VBATT ramp up time to 3.2V is 32ms

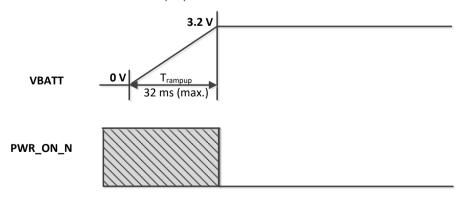


Figure 11. VBATT Ramp Up Timing

4118584 **Rev 8.0** September 19, 2017 35

5.2. Module Switch-Off

AT command AT+CFUN=0 enables the user to properly switch the AirPrime HL7539 module off.

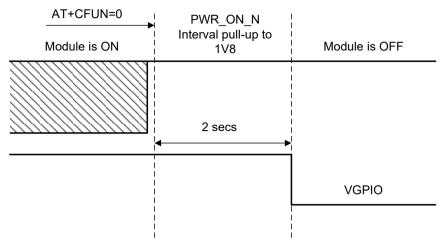


Figure 12. Power OFF Sequence for PWR_ON_N, VGPIO

Note:

PWR_ON_N is internally pulled up by $100k\Omega$ to 1.8V.

5.3. Emergency Power OFF

If required, the module can be switched off by controlling the RESET_IN_N pad (pad 11). This must only be used in emergency situations if the system freezes (not responding to AT commands).

To perform an emergency power off, a low-level pulse must be sent on the RESET_IN_N pad for 20ms while the PWR_ON_N signal is inactive (high level). This action will immediately shut the HL7539 module down and the registers of the CPU and RAM memory will be reset for the next power on.

5.4. Sleep Mode Management

5.4.1. Using UART1

AT command AT+KSLEEP enables sleep mode configuration.

AT+KSLEEP=0:

- The AirPrime HL7539 module is active when DTR signal is active (low electrical level).
- When DTR is deactivated (high electrical level), the AirPrime HL7539 module enters sleep mode after a while.
- On DTR activation (low electrical level), the AirPrime HL7539 module wakes up.

AT+KSLEEP=1:

- The AirPrime HL7539 module determines when it enters sleep mode (when no more tasks are running).
- "0x00" character on the serial link wakes the AirPrime HL7539 module up.

AT+KSLEEP=2:

• The AirPrime HL7539 module never enters sleep mode.

5.4.2. Using USB

Use AT+KSLEEP=1 to allows the module to automatically enter sleep mode while the USB interface is in use.

5.5. Power Supply Design

The AirPrime HL7539 module should not be supplied with voltage over 4.5V even temporarily or however briefly.

If the system's main board power supply unit is unstable or if the system's main board is supplied with over 4.5V, even in the case of transient voltage presence on the circuit, the module's power amplifier may be severely damaged.

To avoid such issues, add a voltage limiter to the module's power supply lines so that VBATT and VBATT_PA signal pads will never receive a voltage surge over 4.5V. The voltage limiter can be as simple as a Zener diode with decoupling capacitors as shown in the diagram below.

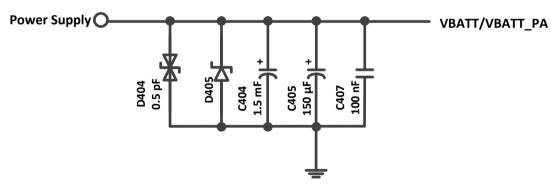


Figure 13. Voltage Limiter Example

5.6. ESD Guidelines for SIM Card

Decoupling capacitors must be added according to the drawings below as close as possible to the SIM card connectors on UIM1_CLK, UIM1_RST, UIM1_VCC, UIM1_DATA and UIM1_DET signals to avoid EMC issues and to comply with the requirements of ETSI and 3GPP standards covering the SIM electrical interface.

A typical schematic including SIM detection is provided below.

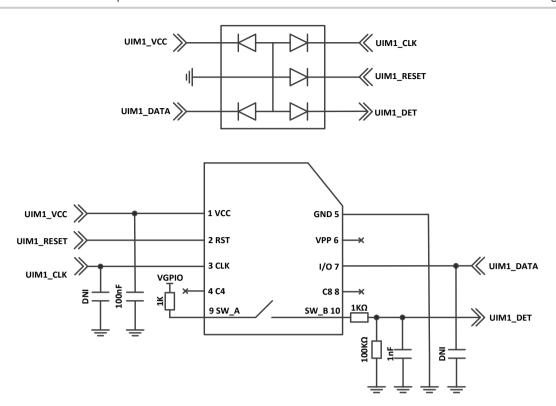


Figure 14. EMC and ESD Components Close to the SIM

5.7. ESD Guidelines for USB

When the USB interface is externally accessible, it is required to have ESD protection on the USB_VBUS, USB_D+ and USB_D- signals.

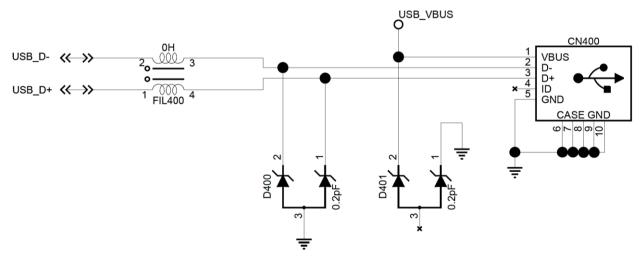


Figure 15. ESD Protection for USB

Note: It is not recommended to have an ESD diode with feedback path from USB_VBUS to either USB_D+ or USB_D-.

Sierra Wireless recommends using a 90Ω DLP0NSN900HL2L EMC filter and an RCLAMP0503N or ESD5V3U2U-03LRH ESD diode.

5.8. Radio Integration

The AirPrime HL7539 is equipped with an external antenna. A 50Ω line matching circuit between the module, the customer's board and the RF antenna is required, for the GSM feed path, as shown in the example below.

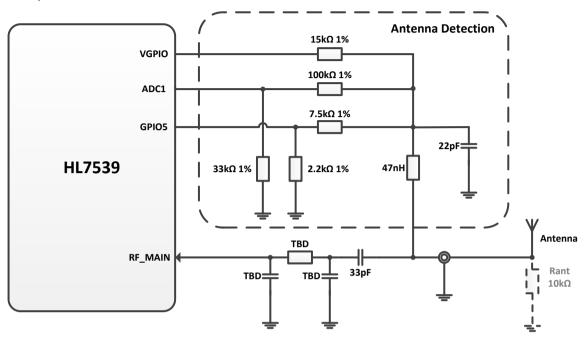


Figure 16. GSM Antenna Connection with Antenna Detection

Note: Antenna detection circuit is optional. Rant is the equivalent DC terminating resistor of the antenna. Rant should be close to 10 k Ω .

6. X-Ray Exposure

X-ray exposure results in an undesirable shift in programmed bit threshold voltage of the Flash memory.

As a result, Sierra Wireless recommends avoiding any X-ray exposure during customer manufacturing process to ensure software integrity and long-term reliability.

In case X- ray inspection could not be eliminated from the customer manufacturing process, a variety of mitigation methods should be implemented to lower the risk of potential failure:

- Use of filter between source and module to minimize exposure to harmful soft X- ray
 - 300µm Zn filter or 1mm Al filter are optimal
 - Zn and Al absorb soft X-ray to which silicon is particularly vulnerable, and transmit soft and medium energy X-rays required to obtain good imaging
- Minimize X-Ray dose
 - should be less than 10 RADs
 - KV peak should be less than 50KV peak
 - tube current should be less than 20µA
- Maximize distance between source and the module
- Minimize the X-ray time
 - use the shortest exposure time possible
 - sampling only, not 100% inspection

Note that these mitigation guidelines are for information only as it's NOT possible to provide accurate acceptable or unacceptable X- ray exposure criteria, e.g. maximum safe dose rate, maximum safe exposure time, etc.

>> 7. Ordering Information

Table 31. Ordering Information

Model Name	Description	Part Number
HL7539	HL7539 embedded module	Contact Sierra Wireless for the latest SKU
DEV-KIT	HL Series Development Kit	6000620

4118584 Rev 8.0 September 19, 2017 41

>> 8. Terms and Abbreviations

Abbreviation	Definition
ADC	Analog to Digital Converter
AGC	Automatic Gain Control
AT	Attention (prefix for modem commands)
CDMA	Code Division Multiple Access
CF3	Common Flexible Form Factor
CLK	Clock
CODEC	Coder Decoder
CPU	Central Processing Unit
DAC	Digital to Analog Converter
DTR	Data Terminal Ready
EGNOS	European Geostationary Navigation Overlay Service
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
EN	Enable
ESD	Electrostatic Discharges
ETSI	European Telecommunications Standards Institute
FDMA	Frequency-division multiple access
GAGAN	GPS aided geo augmented navigation
GLONASS	Global Navigation Satellite System
GND	Ground
GNSS	Global Navigation Satellite System
GPIO	General Purpose Input Output
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications
Hi Z	High impedance (Z)
IC	Integrated Circuit
IMEI	International Mobile Equipment Identification
I/O	Input / Output
LED	Light Emitting Diode
LNA	Low Noise Amplifier
MAX	Maximum
MIN	Minimum
MSAS	Multi-functional Satellite Augmentation System
N/A	Not Applicable
PA	Power Amplifier
PC	Personal Computer
РСВ	Printed Circuit Board
PCL	Power Control Level
PLL	Phase Lock Loop
PWM	Pulse Width Modulation
QZSS	Quasi-Zenith Satellite System

4118584 Rev 8.0 September 19, 2017 42

Abbreviation	Definition
RF	Radio Frequency
RFI	Radio Frequency Interference
RMS	Root Mean Square
RST	Reset
RTC	Real Time Clock
RX	Receive
SCL	Serial Clock
SDA	Serial Data
SIM	Subscriber Identification Module
SMD	Surface Mounted Device/Design
SPI	Serial Peripheral Interface
SW	Software
PSRAM	Pseudo Static RAM
TBC	To Be Confirmed
TBD	To Be Defined
TP	Test Point
TX	Transmit
TYP	Typical
UART	Universal Asynchronous Receiver-Transmitter
UICC	Universal Integrated Circuit Card
USB	Universal Serial Bus
UIM	User Identity Module
VBATT	Main Supply Voltage from Battery or DC adapter
VSWR	Voltage Standing Wave Ratio
WAAS	Wide Area Augmentation System